Conditional colorings of graphs

نویسندگان

  • Hong-Jian Lai
  • Jianliang Lin
  • Bruce Montgomery
  • Taozhi Shui
  • Suohai Fan
چکیده

For an integer r > 0, a conditional (k, r)-coloring of a graph G is a proper k-coloring of the vertices of G such that every vertex of degree at least r in G will be adjacent to vertices with at least r different colors. The smallest integer k for which a graph G has a conditional k-coloring is the r-conditional chromatic number χr(G). In this paper, the behavior and bounds of conditional chromatic number of a graph G and its generalization are investigated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect $2$-colorings of the Platonic graphs

In this paper, we enumerate the parameter matrices of all perfect $2$-colorings of the Platonic graphs consisting of the tetrahedral graph, the cubical graph, the octahedral graph, the dodecahedral graph, and  the icosahedral graph.

متن کامل

Complexity of the conditional colorability of graphs

For an integer r > 0, a conditional (k, r)-coloring of a graph G is a proper k-coloring of the vertices of G such that every vertex v of degree d(v) in G is adjacent to vertices with at least min{r, d(v)} different colors. The smallest integer k for which a graph G has a conditional (k, r)-coloring is called the rth order conditional chromatic number, denoted by χr(G). It is easy to see that th...

متن کامل

Extremal H-colorings of trees and 2-connected graphs

For graphs G and H, an H-coloring of G is an adjacency preserving map from the vertices of G to the vertices of H. H-colorings generalize such notions as independent sets and proper colorings in graphs. There has been much recent research on the extremal question of finding the graph(s) among a fixed family that maximize or minimize the number of H-colorings. In this paper, we prove several res...

متن کامل

Vertex-, edge-, and total-colorings of Sierpinski-like graphs

Vertex-colorings, edge-colorings and total-colorings of the Sierpiński gasket graphs Sn, the Sierpiński graphs S(n, k), graphs S (n, k), and graphs S(n, k) are considered. In particular, χ′′(Sn), χ (S(n, k)), χ(S(n, k)), χ(S(n, k)), χ(S(n, k)), and χ(S(n, k)) are determined.

متن کامل

On Low Rank-Width Colorings

We introduce the concept of low rank-width colorings, generalizing the notion of low tree-depth colorings introduced by Nešetřil and Ossona de Mendez in [25]. We say that a class C of graphs admits low rank-width colorings if there exist functions N : N→ N and Q : N→ N such that for all p ∈ N, every graph G ∈ C can be vertex colored with at most N(p) colors such that the union of any i ≤ p colo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 306  شماره 

صفحات  -

تاریخ انتشار 2006